

Security Assessment Report

CMTAT Coupon Bond
September 12th, 2023

1

sec3 Report

Summary

The sec3 team (formerly Soteria) was engaged to do a thorough security analysis of the

CMTAT Coupon Bond Contracts. The artifact of the audit was the source code of the smart

contracts (excluding tests) in a private repository.

The initial audit was done on commit 6d9d4c42c0e9b34dd09490bbe8e084a36a028245. The

audit revealed 8 issues or questions. The team responded with a second version for the post-

audit review to confirm if the reported issues have been resolved. The audit concludes on

commit 3b9118d1b231de5db7cf157743c2dc652cbb9ef3.

This report describes the findings and resolutions in detail.

2

sec3 Report

Table of Contents

Result Overview .. 3

Findings in Detail .. 4

[L-1] fundedUnits is not updated appropriately .. 4

[L-2] issuedUnits is not updated appropriately ... 5

[L-3] allocatedUnits cannot be updated to a smaller value .. 6

[I-1] DEBT_ROLE is too powerful .. 7

[I-2] Missing zero address check ... 9

[I-3] Missing zero address check ... 10

[I-4] Missing zero address check .. 11

[I-5] Unnecessary type conversion ... 12

Appendix: Methodology and Scope of Work .. 13

3

sec3 Report

Result Overview

Issue Impact Status
[L-1] fundedUnits is not updated appropriately Low Resolved

[L-2] issuedUnits is not updated appropriately Low Resolved

[L-3] allocatedUnits cannot be updated to a smaller value Low Resolved

[I-1] DEBT_ROLE is too powerful Informational Resolved

[I-2] Missing zero address check Informational Resolved

[I-3] Missing zero address check Informational Resolved

[I-4] Missing zero address check Informational Resolved

[I-5] Unnecessary type conversion Informational Resolved

4

sec3 Report

Findings in Detail

[L-1] fundedUnits is not updated appropriately

When calculating the remaining _allocatedUnits, instead of setting it to _allocatedUnits,

the fundedUnits is updated to the difference between the current _allocatedUnits and the

fundOrder. As a result, the access control at line 271 is always true and becomes

unfunctional.

/* contracts/modules/ISSUANCE_PROGRAM_BASE.sol */
269 | uint256 amount = _allocatedUnits -
270 | fundedUnits[_issuanceToken][_msgSender()];
271 | require(amount > 0, "Already funded");
272 |
273 | unchecked {
274 | fundedUnits[_issuanceToken][_msgSender()] = amount;
275 | }

Possible repairs

Consider assigning _allocatedUnits to fundedUnits[_issuanceToken][_msgSender()] at line

274.

Resolution

This issue has been fixed by commit b966f1d.

5

sec3 Report

[L-2] issuedUnits is not updated appropriately

Similar to L-1, at line 329, issuedUnits is set to the difference

between _fundedUnits and issuedUnits. As a result, the access control at line 327 becomes

unfunctional since the difference between _fundedUnits and issuedUnits is always not 0.

/* contracts/modules/ISSUANCE_PROGRAM_BASE.sol */
326 | uint256 amount = _fundedUnits - issuedUnits[_issuanceToken][_account];
327 | require(amount > 0, "No redeemable units");
328 | unchecked {
329 | issuedUnits[_issuanceToken][_account] = amount;
330 | }

Possible repairs

Consider assigning _fundedUnits to issuedUnits[_issuanceToken][_account] at line 329.

Resolution

This issue has been fixed by commit b966f1d.

6

sec3 Report

[L-3] allocatedUnits cannot be updated to a smaller value

At line 197, if the new amount is less than the old allocatedUnits, _amount -

allocatedUnits[_issuanceToken][_account] will underflow and cause the update to fail.

/* contracts/modules/ISSUANCE_PROGRAM_BASE.sol */
196 | issuance.totalAllocatedUnits +=
197 | _amount -
198 | allocatedUnits[_issuanceToken][_account];

Possible repairs

Rewrite the assignment and avoid the underflow.

issuance.totalAllocatedUnits = issuance.totalAllocatedUnits + _amount –
 allocatedUnits[_issuanceToken][_account];

Resolution

This issue has been fixed by commit b966f1d.

7

sec3 Report

[I-1] DEBT_ROLE is too powerful

/* contracts/modules/wrapper/optional/DebtModule/DebtBaseModule.sol */
151 | function setDebtAdditionalInfo(
152 | string memory issuerName_,
153 | string memory issuerInfo_,
154 | IERC20 currency_,
155 | uint8[] memory labels_
156 |) public onlyRole(DEBT_ROLE) {
157 | _checkLabels(labels_);
158 | debtAdditionalInfo = (
159 | DebtAdditionalInfo(
160 | issuerName_,
161 | issuerInfo_,
162 | currency_,
163 | labels_
164 |)
165 |);
170 | }

/* contracts/modules/wrapper/optional/DebtModule/DistributionModule.sol */
216 | function repay(uint256 paymentIndex) public {
230 | debtAdditionalInfo.currency.transferFrom(
231 | _msgSender(),
232 | address(this),
233 | payments[paymentIndex].amount * totalSupply()
234 |);
245 | }
246 |
247 | function revertRepayment(
248 | uint256 paymentIndex
249 |) public onlyRole(ISSUER_ROLE) {
271 | debtAdditionalInfo.currency.transfer(
272 | _msgSender(),
273 | payments[paymentIndex].amount * totalSupply()
274 |);
283 | }
284 |
285 | function claimPayment(uint256 index) public {
310 | if (!debtAdditionalInfo.currency.transfer(_msgSender(), paymentAmount)) {
311 | revert Errors.TransferFailed();
312 | }
314 | }

8

sec3 Report

currency is fully controlled by the DEBT_ROLE role. If DEBT_ROLE does something evil or the

private key is stolen, users who call the repay, revertRepayment, claimPayment functions

may suffer losses.

Resolution

The team clarified that the DEBT_ROLE will not be held by anyone. The team will set the

debtinfo using the DEFAULT_ADMIN role. Once completed, the team will renounce that role

so there's no one with DEBT_ROLE once the token is issued. This issue has been resolved.

9

sec3 Report

[I-2] Missing zero address check

/* contracts/modules/wrapper/optional/DebtModule/DistributionModule.sol */
107 | function __DistributionModule_init_unchained(address paymentRedemptionTokenFactory)
 public onlyInitializing {
108 | paymentRedemptionTokenFactory =
 PAYMENT_REDEMPTION_TOKEN_FACTORY_BASE(paymentRedemptionTokenFactory_);
109 | }

/* contracts/modules/PAYMENT_REDEMPTION_TOKEN_FACTORY_BASE.sol */
020 | contract PAYMENT_REDEMPTION_TOKEN_FACTORY_BASE is Initializable, ContextUpgradeable {
021 |
022 | address public paymentRedemptionTokenBeacon;
023 |
024 | function initialize(address paymentRedemptionTokenBeacon_) public{
025 | __PAYMENT_REDEMPTION_TOKEN_FACTORY_init(paymentRedemptionTokenBeacon_);
026 | }
027 |
028 | function __PAYMENT_REDEMPTION_TOKEN_FACTORY_init(
 address paymentRedemptionTokenBeacon_) internal initializer {
029 | __Context_init_unchained();
030 | __PAYMENT_REDEMPTION_TOKEN_FACTORY_init_unchained(paymentRedemptionTokenBeacon_);
031 | }
032 |
033 | function __PAYMENT_REDEMPTION_TOKEN_FACTORY_init_unchained(
 address paymentRedemptionTokenBeacon_) internal initializer {
034 | paymentRedemptionTokenBeacon = paymentRedemptionTokenBeacon_;
035 | }
072 | }

The zero address check is missing for paymentTokenFactory_

in PAYMENT_TOKEN_FACTORY_BASE

Resolution

This issue has been fixed by commit b966f1d.

10

sec3 Report

[I-3] Missing zero address check

/* contracts/modules/wrapper/optional/DebtModule/DistributionModule.sol */
216 | function repay(uint256 paymentIndex) public {
230 | debtAdditionalInfo.currency.transferFrom(
231 | _msgSender(),
232 | address(this),
233 | payments[paymentIndex].amount * totalSupply()
234 |);
245 | }
246 |
247 | function revertRepayment(
271 | debtAdditionalInfo.currency.transfer(
272 | _msgSender(),
273 | payments[paymentIndex].amount * totalSupply()
274 |);
283 | }

/* contracts/modules/wrapper/optional/DebtModule/DebtBaseModule.sol */
151 | function setDebtAdditionalInfo(
152 | string memory issuerName_,
153 | string memory issuerInfo_,
154 | IERC20 currency_,
155 | uint8[] memory labels_
156 |) public onlyRole(DEBT_ROLE) {
157 | _checkLabels(labels_);
158 | debtAdditionalInfo = (
165 |);
170 | }

The zero address check is done for debtAdditionalInfo.currency in pushPayment. However,

it’s missing in repay and revertRepayment. Consider adding the zero address check in the

function setDebtAdditionalInfo.

Resolution

This issue has been fixed by commit b966f1d.

11

sec3 Report

[I-4] Missing zero address check

/* contracts/modules/ISSUANCE_PROGRAM_BASE.sol */
134 | function createIssuance(
135 | address _issuerSigningAddress,
136 | address _issuerPaymentAddress,
137 | uint _issuanceDate,
138 | uint _issuancePricePerUnit,
139 | IERC20 _currency,
140 | uint256 invoiceAmount,
141 | address invoiceRecipient,
142 | MintModule _issuanceToken
143 |) external onlyRole(DEFAULT_ADMIN_ROLE) whenNotPaused {
168 |
169 | if(invoiceAmount > 0) {
170 | issuance.invoice = Invoice(invoiceAmount, invoiceRecipient, false);
171 | }
179 | }
180 |
181 | function setInvoice(
182 | address _issuanceToken,
183 | uint256 _amount,
184 | address _recipient
185 |) external onlyRole(DEFAULT_ADMIN_ROLE) whenNotPaused {
188 | issuance.invoice = Invoice(_amount, _recipient, false);
189 | }

At line 170 and line 188, the zero address checks for invoiceRecipient and _recipient are

missing, which may lead to invalid invoices.

Resolution

This issue has been fixed by commit 3b9118d.

12

sec3 Report

[I-5] Unnecessary type conversion

/* contracts/modules/wrapper/optional/DebtModule/DebtBaseModule.sol */
139 | function _checkLabels(uint8[] memory labels_) internal pure {
140 | if(labels_.length > 8) revert Errors.OutOfBounds(labels_.length);
141 | for (uint256 i = 0; i < labels_.length; i++) {
142 | if(uint8(labels_[i]) > 7) revert Errors.OutOfBounds(uint256(labels_[i]));
149 | }

labels_ is already a uint8 array. There is no need to convert the elements to uint8 again.

Resolution

This issue has been fixed by commit b966f1d.

13

sec3 Report

Appendix: Methodology and Scope of Work

The sec3 (formerly Soteria) audit team, which consists of Computer Science professors and

industrial researchers with extensive experience in smart contract security, program analysis,

testing and formal verification, performed a comprehensive manual code review, software

static analysis and penetration testing.

Assisted by the sec3 Scanner developed in-house, the audit team particularly focused on the

following work items:

• Check common security issues.

• Check program logic implementation against available design specifications.

• Check poor coding practices and unsafe behavior.

• The soundness of the economics design and algorithm is out of scope of this work

DISCLAIMER

The instance report ("Report") was prepared pursuant to an agreement between

Coderrect Inc. d/b/a sec3 (the "Company") and FQX AG (the "Client"). This Report solely

includes the results of a technical assessment of a specific build and/or version of the

Client's code specified in the Report ("Assessed Code") by the Company. The sole

purpose of the Report is to provide the Client with the results of the technical

assessment of the Assessed Code. The Report does not apply to any other version

and/or build of the Assessed Code. Regardless of the contents of the Report, the Report

does not (and should not be interpreted to) provide any warranty, representation, or

covenant that the Assessed Code: (i) is error and/or bug-free, (ii) has no security

vulnerabilities, and/or (iii) does not infringe any third-party rights. Moreover, the

Report is not, and should not be considered, an endorsement by the Company of the

Assessed Code and/or of the Client. Finally, the Report should not be considered

investment advice or a recommendation to invest in the Assessed Code and/or the

Client.

This Report is considered null and void if the Report (or any portion thereof) is altered

in any manner.

ABOUT

Founded by leading academics in the field of software security and senior industrial

veterans, sec3 (formerly Soteria) is a leading blockchain security company. We are also

building sophisticated security tools that incorporate static analysis, penetration

testing, and formal verification.

At sec3, we identify and eliminate security vulnerabilities through the most rigorous

process and aided by the most advanced analysis tools.

For more information, check out our website and follow us on twitter.

https://sec3.dev/
https://twitter.com/Sec3dev

	Result Overview
	Findings in Detail
	[L-1] fundedUnits is not updated appropriately
	[L-2] issuedUnits is not updated appropriately
	[L-3] allocatedUnits cannot be updated to a smaller value
	[I-1] DEBT_ROLE is too powerful
	[I-2] Missing zero address check
	[I-3] Missing zero address check
	[I-5] Unnecessary type conversion
	Appendix: Methodology and Scope of Work

